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The Atmospheric uncertainties

Atmospheric Specification (AS):
• Background state provided by numerical weather

forecasts / atmospheric climate reanalysis.
• Fluctuations of those profiles (like Gavity Waves) are

not resolved in ECMWF, G2S, ...

Uncertainties associated with AS:
• Can be reduced using SVD decomposition
• Described by a vector ξ ∈ Rd

Assessing the impact of ξ on infrasound/acoustic
propagation:
• Deviation from mean state is large but d < 10.
• For computational model parameters θ ,

Y = F (X(ξ );θ) can be represented using a
metamodel.
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Outline of the Presentation

1 Polynomial Chaos based Metamodel

– What is a Metamodel ?
– The Polynomial Chaos (gPC) Framework

2 Planetary Boundary Layer (PBL) as a Validation Case

– PBL with a Nocturnal Jet
– Normal Modes Decomposition
– Random Modes and Random Wavepackets
– Performance of the Metamodel

3 Towards a more Realistic Atmosphere

– Incorporating Small-Scale Fluctuations
– Possible Use of the Metamodel
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On the use of a Metamodel

Build a metamodel F̂ of Y = F (X (ξ );θ) where ξ ∼N (0,In):

θ

ξn

ξ1 YF

F̂

Characteristics of a metamodel:
• Calibrated using a small number of runs of the expensive code.
• Easy to assess numerically.
• Reproduce the statistical properties of the output.

Application to infrasound propagation:
• Forward uncertainty propagation: Y is a signal at a given distance R
• Association or localization: Y is a set of by-products (duration, amplitude, ...) 4 / 14



Polynomial Chaos decomposition

A non-intrusive metamodel of Y = F (X (ξ );θ) where ξ ∼N (0, In)

Polynomial chaos decomposition:

Y = ∑
j∈J

ajHj (ξ ) and aj = 〈Y ,Hj 〉,

• (Hj )j∈J set of polynomials (up
to degree d)

• (Hj )j∈J orthonormals for inner
product 〈f ,g〉= E[fg].

Cross-validation for order (|J|)
selection: Leave-One-Out
procedure.

Computation of coefficients (aj )j∈J

K = (1 + d)nK ' 3|J|

Point Cloud - Regression w(k) = 1 Quadrature - Projection w(k) 6= 1

ξ1

ξ2

ξ1

ξ2

(aj )j∈J = argmin
a∈R|J|

‖Y (ξ )−∑
j∈J

aj Hj (ξ )‖2 ∀j ∈ J,aj =
K
∑

k=1
Y (k)Hj (ξ

(k))w(k)
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Planetary Boundary Layer as a Validation Case

Nocturnal jet seen as a perturbation:

• PBL model from Waxler 2008∗ + random nocturnal jet uJ :

uJ (z,ξ ) = a×e
z−zJ

σ2

→ Effective celerity: c(z,ξ ) = c0(z) + uJ (z,ξ )

• Uncertainties on the jet properties:

a∼ N(ma,sa)
σ ∼ N(mσ ,sσ )

}
⇒ ξ = (a,σ) ∈ R2

Numerical setup:
• Wave propagation with normal modes (FLOWS).
• Perfectly Matched Layer used at z→ ∞

• Neumann homogeneous condition at the ground.
• Std of the parameters→∼ 7% of fluctuation on the profil.

σ

a

∗ Waxler et al., JASA, 2008; Chunchuzov et al., JASA, 1990, 2005, Wilson et al., JASA, 2015. 7 / 14



The acoustic modes

Wave equation: HΨ = k2Ψ: σ(H) = σdisc(H)⊕σcont(H)

Green function at distance R.

G(ω,R)∼
N

∑
l=1

Ψl (ω)2eikl (ω)R√
kl (ω)R︸ ︷︷ ︸

Gl (R,ω)

N depends on ω

Signals and wavepackets.
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The acoustic modes

Wave equation: HΨ = k2Ψ: σ(H) = σdisc(H)⊕σcont(H)

Green function at distance R.

G(ω,R,ξ )∼
N

∑
l=1

Ψl (ω,ξ )2eikl (ω,ξ )R√
kl (ω,ξ )R︸ ︷︷ ︸

Gl (R,ω,ξ )

N depends on ω and ξ

Signals and wavepackets.
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Random Modes

The spectrum of H(ξ ) consists in random variables kl (ξ ) that may be difficult to follow as ξ

varies:

σcont(H)

k6 ∈ σdisc(H)
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Random Wavepackets

PDF of Gi (ω,ξ ) as a function of ξ depends on the mode number i .
Source is fixed and deterministic, we only look at variability generated by the random medium.

gPC expansion for
Y = (kl (ξ ),Ψl (z,ξ ))l=1,...,N :

• k̃l (ξ ) = ∑
j∈J

akl
j Hj (ξ )

• Ψ̃l (z,ξ ) = ∑
j∈J

aΨl
j (z)Hj (ξ )

⇒ Metamodel for s(t).
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Convergence properties

About convergence of signals s̃(t ,ξ ) produced by the gPC-metamodel.
• (1) gPC provides convergence in L2-norm and (2) G depends continuously on kl and Ψl .

Hence ||G̃−G||2
P→∞−−→ 0.

• F is an L2-isometry and thus, ||s̃(t ,ξ )−s(t ,ξ )||2
P→∞−−→ 0.

Comparison of gPC and Monte-Carlo simulations:
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Impact of small-scale fluctuations

Atmospheric perturbations include large deviation and turbulent
noise: c(z,ξ ) = c0(z,ξ ) + εc1(z):

The impact of the turbulent noise can be modelled using the
coupling matrix (Cnm)n,m

p ∼
N

∑
n=1

φ2
n0(ξ )eikn0(ξ )r√

Rkn0(ξ )

(
1 + i
√

εR
ω2Cnn(ξ )

2kn0(ξ )

)

+
N

∑
n=1

N

∑
m=1

F ((ξ ))

The coupling matrix depends on the large scale perturbations, its
gPC expansion can be derived from φn0 = ∑

+∞

k=0 α
(n)
k (z)Hk (ξ ):

Cnl =
+∞

∑
k=0

γ
(nl)
k Hk (ξ ) where γ

(nl)
p = ∑

j ,k
〈

µ(z)α
(n)
j (z)

c2
0(z)

,α
(l)
k (z)〉E

[
HjHk Hp

]
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Take-Home Messages

gPC framework is an efficient way to obtain a metamodel for complex signals unless d � 10.
One metamodel per IMS station provides a way for localization and association procedures,
provided a first guess is available.
Since the metamodel does not
depend on source signal it can
be used together with a
random incoming signal (e.g.
Microbarom) with no
supplementary cost.

Comparison map of association by NET-VISA (in blue) and by the Late Event Bulletin (in red).14 / 14
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