DE LA RECHERCHE À L'INDUSTRIE

Métamodèle multi-échelle pour la propagation acoustique en milieu aléatoire

Journée des doctorants de la DIF, 19 juin 2019

A. Goupy ^{1,3}, C. Millet ^{1,3} & D. Lucor ²

¹ CEA, DAM, DIF, F-91297 Arpajon, France
² LIMSI-CNRS, F-91403 Orsay, France
³ CMLA, ENS Paris-Saclay, F-94235 Cachan, France

école
ecole
normale ———
and a factor of a second
superieure ———
paris caclay
paris-saciay-

www.cea.fr

Atmospheric Specification (AS):

- Background state provided by numerical weather forecasts / atmospheric climate reanalysis.
- Fluctuations of those profiles (like Gavity Waves) not resolved in ECMWF, G2S, ...

Uncertainties associated with AS:

- Can be reduced using SVD decomposition.
- Described by a vector $\xi \in \mathbb{R}^d$.

Assessing the impact of ξ on infrasound:

- Deviation from mean state (due to randomness) is large but *d* < 10.</p>
- For computational model parameters θ, Y = F(X(ξ); θ) can be represented using a metamodel.

1 Polynomial Chaos based Metamodel

- What is a Metamodel ?
- The Polynomial Chaos (gPC) Framework

2 The PBL as a Validation Case

- PBL with a Nocturnal Jet
- Normal Modes Decomposition
- Random Modes and Random Wavepackets
- Signals from the Metamodel

S Towards a more Realistic Atmosphere

- Incorporating Small-Scale Fluctuations
- Possible Use of the Metamodel

DE LA RECHERCHE À L'HIDUSTRIS

On the use of a Metamodel

Build a metamodel \hat{F} of $Y = F(X(\xi); \theta)$ where $\xi \sim \mathcal{N}(0, \mathbb{I}_n)$:

- Characteristics of a metamodel:
 - Calibrated using a small number of runs of the expensive code.
 - Easy to assess numerically.
 - Reproduce the statistical properties of the output.
- Application to infrasound propagation:
 - Forward uncertainty propagation: Y is a signal at a given distance R.
 - Association or localization: Y is a set of Qols* (duration, etc.).

* Quantity of Interest.

Polynomial Chaos decomposition

A non-intrusive metamodel of $Y = F(X(\xi); \theta)$ where $\xi \sim \mathcal{N}(0, I_n)$

Polynomial chaos decomposition:

$$Y = \sum_{j \in J} a_j H_j(\xi)$$
 and $a_j = \langle Y, H_j \rangle$,

where $(H_j)_{j \in J}$ is a set of polynomials (up to degree *d*) and $(H_j)_{j \in J}$ are orthonormals for inner product $\langle f, g \rangle = \mathbb{E}[fg]$.

Cross-validation for order selection (|J|): Leave-One-Out procedure.

■ Computation of coefficients (a_j)_{j∈J}

Polynomial Chaos based Metamodel

- What is a Metamodel ?
- The Polynomial Chaos (gPC) Framework

2 The PBL as a Validation Case

- PBL with a Nocturnal Jet
- Normal Modes Decomposition
- Random Modes and Random Wavepackets
- Signals from the Metamodel
- **3** Towards a more Realistic Atmosphere
 - Incorporating Small-Scale Fluctuations
 - Possible Use of the Metamodel

Nocturnal jet seen as a perturbation:

PBL model from Waxler 2008* + random nocturnal jet u_J at fixed altitude:

$$u_J(z,\xi) = \mathbf{a} \mathrm{e}^{(z-z_J)/\sigma^2}$$

 \rightarrow Effective celerity: $c(z,\xi) = c_0(z) + u_J(z,\xi)$.

Uncertainties on the jet properties:

$$\left. \begin{array}{l} a \sim \mathcal{N}(m_a, s_a) \\ \sigma \sim \mathcal{N}(m_\sigma, s_\sigma) \end{array} \right\} \Rightarrow \xi = (a, \sigma) \in \mathbb{R}^2.$$

Numerical setup:

- Wave propagation with normal modes (FLOWS).
- Perfectly Matched Layer used at $z \rightarrow \infty$.
- Neumann homogeneous condition at the ground.
- Std of the parameters $\simeq 7\%$ of fluctuation on the profil.

The acoustic modes

- Wave equation: $H\Psi = k^2\Psi$: $\sigma(H) = \sigma_{disc}(H) \oplus \sigma_{cont}(H)$
- Green function at distance *R*.

N depends on ω

Signals and wavepackets.

The acoustic modes

- Wave equation: $H\Psi = k^2\Psi$: $\sigma(H) = \sigma_{disc}(H) \oplus \sigma_{cont}(H)$
- Green function at distance *R*.

N depends on ω

Signals and wavepackets.

The acoustic modes

- Wave equation: $H\Psi = k^2\Psi$: $\sigma(H) = \sigma_{disc}(H) \oplus \sigma_{cont}(H)$
- Green function at distance *R*.

N depends on ω

Signals and wavepackets.

The acoustic modes

- Wave equation: $H\Psi = k^2\Psi$: $\sigma(H) = \sigma_{disc}(H) \oplus \sigma_{cont}(H)$
- Green function at distance *R*.

N depends on ω

Signals and wavepackets.

DE LA RECHERCHE À L'INDUSTR

The acoustic modes

Random medium: $c(z,\xi)$ gives $(k_l(\xi),\Psi_l(z,\xi))$

DE LA RECHERCHE À L'INDUSTRIE

Random Modes

DE LA RECHERCHE À L'INDUSTRIE

DE LA RECHERCHE À UNIDUSTRIE

Signals from the Metamodel

gPC expansion (= metamodel) for $Y = (k_l(\xi), \Psi_l(z, \xi))_{l=1,...,N}$:

$$ilde{\kappa}_l(\xi) = \sum_{j\in J} a_j^{\kappa_l} H_j(\xi) ext{ and } ilde{\Psi}_l(z,\xi) = \sum_{j\in J} a_j^{\Psi_l}(z) H_j(\xi)$$

• We deduce the PDF of $G_l(\omega, \xi)$ and thus, a metamodel for the signal:

$$\tilde{s} = \mathscr{F}^{-1} \sum_{l} \tilde{G}_{l} s_{0} \Rightarrow \mathbb{E}(\tilde{s}), \dots$$

Comparison with direct Monte-Carlo simulations:

Polynomial Chaos based Metamodel

- What is a Metamodel ?
- The Polynomial Chaos (gPC) Framework

2) The PBL as a Validation Case

- PBL with a Nocturnal Jet
- Normal Modes Decomposition
- Random Modes and Random Wavepackets
- Signals from the Metamodel

S Towards a more Realistic Atmosphere

- Incorporating Small-Scale Fluctuations
- Possible Use of the Metamodel

DE LA RECHERCHE À L'INDUSTRI

Impact of small-scale fluctuations

Atmospheric perturbations include large deviation and turbulent noise:

$$c(z,\xi) = \underbrace{c_0(z,\xi)}_{\text{large}} + \underbrace{c_1(z)}_{\text{small}} = c_0(1 + \varepsilon \mu)$$

The impact of small-variance turbulence is modelled using the coupling matrix (C_{nm})_{n,m}

$$p \sim \sum_{n} G_{n}(\xi) \left[1 + i\sqrt{\varepsilon}R \frac{\omega^{2} C_{nn}(\xi)}{2k_{n0}(\xi)} \right] + \sum_{n,m} D_{nm}(\xi)$$

where D_{nm} is obtained from C_{nm} .

■ gPC expansion of C_{nm} (which depends on c_0) can be derived from $\phi_{n0} = \sum_{k=0}^{+\infty} \alpha_k^{(n)}(z) H_k(\xi)$:

$$\frac{C_{nl}}{\sum_{k=0}^{+\infty} \gamma_k^{(nl)} H_k(\xi)} \text{ where } \gamma_p^{(nl)} = \sum_{j,k} \left\langle \frac{\mu(z) \alpha_j^{(n)}(z)}{c_0^2(z)}, \alpha_k^{(l)}(z) \right\rangle \mathbb{E}\left[H_j H_k H_p\right]$$

DE LA RECHERCHE À L'INDUSTRI

Perspectives

Bayesian association (NET-VISA) without propagation model Global Associator (GA) used at IDC Perspectives at NDC/IDC.

- One metamodel per IMS station to account for propagation effects in operational products (localization, association, ...).
- Goal: advanced (real time) statistical analysis of worldwide detections using (meta)models as constraints (actually 94% of detections are false alarms!).

How can we obtain plausible atmos. specif.?

- Naive approach: use a stochastic process. For small perturbations (less than 0.5%) a perturbative approach is sufficient¹. But realistic μ is typically ≈ 10%.
- Since µ is not stationary (uncertainties propagate!), need to generate stochastic GW² fields 'compatible' with climate.

Sanity check: comparison of environmental uncertainty and numerical precision³.

¹ M. Bertin, Post-doc, DASE, 2016-2018.

² B. Ribstein, Post-doc, DASE, 2016-2018.

³ N. Demeure, Thèse en cours, DSSI/ENS Cachan.