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WHY ARE WE INTERESTED IN ATMOSPHERIC PROPAGATION ?

I The verification regime of the Comprehensive Nuclear-Test-Ban
Treaty (CTBT) is designed to detect any nuclear explosion conducted on
Earth – underground, underwater or in the atmosphere.

I Infrasound monitoring is one of the four technologies used by the
International Monitoring System (IMS) to verify compliance with the CTBT.

(source : www.ctbto.org)

I Infrasound has the ability to cover long distances
with little dissipation but signals can be severly
distorted during propagation.

IMany events are detected but an important part of
them does not correspond to physical events but only to
propagation effects.
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THE ATMOSPHERIC UNCERTAINTIES

� Atmospheric Specification (AS) :

• Background state provided by numerical weather forecasts /
atmospheric climate reanalysis.

• Fluctuations of those profiles not resolved.

� Uncertainties associated with AS :

• Come from complex physical phenomena (Turbulence,
Gravity Waves,. . . )

• Statistical study can be conducted to characterize the
uncertainty and describe it by a vector ξ ∈ Rd .

� Assessing the impact of ξ on infrasound :

• Deviation from mean state (due to randomness) can be of
great amplitude but the dimension is low d < 10.

• Long-range propagation can be simulated accurately but
with high computational cost.

• For computational model parameters θ , Y = F(X(ξ );θ) can
be represented using a metamodel.
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OUTLINE

1 Polynomial Chaos based Metamodel

•What is a Metamodel ?
• The Polynomial Chaos (gPC) Framework
• The problem of long-term integration
• A quick review of the existing methods

2 Modal decomposition

• Spectrum of the propagating operator
• From spectral expansion to temporal signals

3 gPC & Modal decomposition

•Modal decomposition for gPC
• Technical point : isolate a mode
• Different gPC for different physics
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ON THE USE OF A METAMODEL
Build a metamodel F̂ of Y = F(X(ξ );θ) where ξ ∼N (0,In) :

θ

ξn

ξ1 YF

F̂

� Characteristics of a metamodel :
• Calibrated using a small number of runs of the expensive code.
• Easy to assess numerically.
• Reproduce the statistical properties of the output.

� Application to infrasound propagation :
• Forward uncertainty propagation : Y is a signal at a given distance R
• Association or localization : Y is a set of by-products (duration, amplitude, ...)
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POLYNOMIAL CHAOS DECOMPOSITION

� A non-intrusive metamodel of Y = F(X(ξ );θ) where ξ ∼N (0, In)

� Polynomial chaos decomposition :

Y = ∑
j∈J

ajHj(ξ ) and aj = 〈Y,Hj〉,

• (Hj)j∈J set of polynomials (up to degree d)
• (Hj)j∈J orthonormals for inner product

〈f ,g〉= E[fg]

� Cross-validation for order (|J|) selection :
Leave-One-Out procedure.

� Sobol’ indices can be expressed with the
coefficients for sensitivity analysis.

� Once the (aj)j∈J are computed, Y can be
easily computed by evaluating the
polynomials.

� Computation of coefficients (aj)j∈J

K = (1+d)nK ' 3|J|

Point Cloud - Regression w(k) = 1 Quadrature - Projection w(k) 6= 1

ξ1

ξ2

ξ1

ξ2

(aj)j∈J = argmin
a∈R|J|

‖Y(ξ )− ∑
j∈J

ajHj(ξ )‖2 ∀j ∈ J,aj =
K
∑

k=1
Y(k)Hj(ξ

(k))w(k)
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THE LONG-TERM INTEGRATION PROBLEM

� Classical gPC fails in representing
very simple stochastic dynamics.

� Y = cos(
√

k0 + k1ξ t)
• k0 = (2π)2 and k1 = 0.2k0
• ξ ∼U [−11]

Source : Chu Van Mai PhD Thesis, 2016.

Up to degree 10 Up to degree 30
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A QUICK REVIEW

Existing methods for dealing with stochastic dynamics can be classified in two families :

� Work on the gPC :

• Use high degree polynomials [Lucor and Karniadakis, 2004 ; Blatman and Sudret 2010], using techniques to
limit the size of the basis [Jakeman et al., 2015 ; Hampton and Doostan, 2015 ; Doostan, 2013].

• Multi-element approach to partition the input space [Wan and Karniadakis, 2005 ; Paffrath and Wever 2007]
or the physical space [Chen et al. 2015].

• Enrich the basis using non linear functions [Ghosh and Ghanem, 2008 ; Gosh and Iaccarino, 2007 ; Pettit and
Beran, 2006 ; Le Maı̂tre et al., 2007].

� Try to capture the dynamics :

• In the case of periodic systems [Witteveen and Bijl, 2008 ; Le Maı̂tre et al., 2010]
• Use time-dependant polynomials [Gerritsma et al., 2010 ; Heuveline and Schick, 2014 ; Luchtenburg et al.,

2014] or use a stochastic time [Mai et al., 2017]
• Couple gPC with autoregressive processes [Spiridonakos and Chatzi, 2015 ; Wagner and Ferris, 2007 ;

Kopsaftopoulos and Fassois, 2013 ; Samara et al., 2013 ; Sakellariou and Fassois, 2016, Mai et al., 2016]

For wave propagation in an inhomogeneous random medium, the dynamics can be characterized by
the behaviour of the spectral elements of the propagating operator.
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OUTLINE

1 Polynomial Chaos based Metamodel

•What is a Metamodel ?
• The Polynomial Chaos (gPC) Framework
• The problem of long-term integration
• A quick review of the existing methods

2 Modal decomposition

• Spectrum of the propagating operator
• From spectral expansion to temporal signals

3 gPC & Modal decomposition

•Modal decomposition for gPC
• Technical point : isolate a mode
• Different gPC for different physics
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PROPAGATION MODEL : THE WAVE EQUATION
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� Guided waves :
[

d2

dz2 +
ω2

c(z)2

]
Ψ(ω,z) = k(ω)2Ψ(ω,z)

� On a bounded domain, the spectrum is only discrete but on a semi-open domain : σ(H) = σdisc(H)⊕σess(H).

� Only discrete modes (colored dots) have an acoustic contribution.

� Solution G of ∆G+ ω2

c(z)2 G = 0 can be decomposed on the eigenfunctions thanks to spectral theorem.
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THE ACOUSTIC MODES

� Green function at distance R.

G(ω,R)∼
N

∑
l=1

Ψl(ω)2eikl(ω)R√
kl(ω)R︸ ︷︷ ︸

Gl(R,ω)

• The number of discrete modes depends on frequency :
N = N(ω).
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� Signals and wavepackets.
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� Random medium : c(z) gives (kl,Ψl(z)).

� A gPC metamodel for Y = (kl,Ψl(z))l=1,...,N allows to compute the pressure field with a Fourier transform.
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THE ACOUSTIC MODES

� Green function at distance R.

G(ω,R,ξ )∼
N

∑
l=1

Ψl(ω,ξ )2eikl(ω,ξ )R√
kl(ω,ξ )R︸ ︷︷ ︸

Gl(R,ω,ξ )

• The number of discrete modes depends on frequency and ξ :
N = N(ω,ξ ).
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� Random medium : c(z,ξ ) gives (kl(ξ ),Ψl(z,ξ )).

� A gPC metamodel for Y = (kl(ξ ),Ψl(z,ξ ))l=1,...,N allows to compute the pressure field with a Fourier transform.
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OUTLINE

1 Polynomial Chaos based Metamodel

•What is a Metamodel ?
• The Polynomial Chaos (gPC) Framework
• The problem of long-term integration
• A quick review of the existing methods

2 Modal decomposition

• Spectrum of the propagating operator
• From spectral expansion to temporal signals

3 gPC & Modal decomposition

•Modal decomposition for gPC
• Technical point : isolate a mode
• Different gPC for different physics
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GPC DEVELOPMENT OF THE SPECTRAL ELEMENTS

� PDF of Gi(ω,ξ ) as a function of ξ depends on the mode number i.

� Source is fixed and deterministic, we only look at variability generated by the random medium.

� gPC expansion for
Y = (kl(ξ ),Ψl(z,ξ ))l=1,...,N :

• k̃l(ξ ) = ∑
j∈J

akl
j Hj(ξ )

• Ψ̃l(z,ξ ) = ∑
j∈J

aΨl
j (z)Hj(ξ )

⇒Metamodel for s(t).
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COMPARISON WITH MONTE-CARLO SIMULATIONS

� About convergence of signals s̃(t,ξ ) produced by the gPC-metamodel.
• (1) gPC provides convergence in L2-norm and (2) G depends continuously on kl and Ψl. Hence
||G̃−G||2

P→∞−−→ 0.
• F is an L2-isometry and thus, ||s̃(t,ξ )− s(t,ξ )||2

P→∞−−→ 0.
� Comparison of gPC and Monte-Carlo simulations :
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TRACKING MODES

Eigenvalues as random variables (ω is fixed)
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Modes are function of ξ and ω but the de-
pendance is unknown.

� Need to track the eigenvalue as a
function of ξ to isolate the QoI and
calibrate the metamodel for a fixed
frequency.

� Need to track the eigenvalue as a
function of ω to compute the signal
associated with this mode for a fixed
input parameter.
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TRACKING MODES

as spatial branches (as ω varies)
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MODE SWITCHING : GPC FOR PARTIAL RESPONSE SURFACE

� A fixed mode can behave very differently depending on the profiles.

� Those regimes can be seperated in the parameter space in order to calibrate
different gPC and capture the different physics :



CONCLUSION AND PERSPECTIVES

I Take-home messages :
� Computing gPC expansions on spectral elements allows to circumvent the long-term integration problem for wave

propagation.

� Our metamodel can be used for any source and at any distance which opens the way to bayesian inversion.

� The spectral decomposition captures local perturbations and can be used for statistical model reduction.

I Perspectives :
� Statistical characterization of the perturbation : Gravity Waves model.

� Multi-scale approach to take small strucutures into account.

� Write a manuscript . . .

STD of |G|

16/16



A PERTURBATIVE APPROACH FOR SMALL SCALE FLUCTUATION

� Atmospheric perturbations include large deviation and turbulent noise :

c(z,ξ ) = c0(z,ξ )︸ ︷︷ ︸
large

+ c1(z)︸︷︷︸
small

= c0(1+ εµ).

� The impact of small-variance turbulence is modelled using the coupling matrix
(Cnm)n,m

p∼∑
n

Gn(ξ )

[
1+ i
√

εR
ω2Cnn(ξ )

2kn0(ξ )

]
+∑

n,m
Dnm(ξ )

where Dnm is obtained from Cnm.

� gPC expansion of Cnm (which depends on c0) can be derived from
φn0 = ∑

+∞

k=0 α
(n)
k (z)Hk(ξ ) :

Cnl =
+∞

∑
k=0

γ
(nl)
k Hk(ξ ) where γ

(nl)
p = ∑

j,k

〈
µ(z)α(n)

j (z)

c2
0(z)

,α
(l)
k (z)

〉
E [HjHkHp]
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