Développements gPC pour la propagation d'ondes en milieux aléatoires

Panorama EDF/CEA/Safran

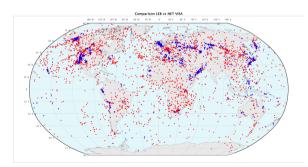
5 juillet 2019

A. Goupy ^{1,3}, D. Lucor ², C. Millet ^{1,3} ¹ CMLA, ENS Paris-Saclay - ² LIMSI, CNRS - ³ CEA, DAM, DIF

WHY ARE WE INTERESTED IN ATMOSPHERIC PROPAGATION ?

► The verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is designed to detect any nuclear explosion conducted on Earth – underground, underwater or in the atmosphere.

► Infrasound monitoring is one of the four technologies used by the International Monitoring System (IMS) to verify compliance with the CTBT.



► Infrasound has the ability to cover long distances with little dissipation but signals can be severly distorted during propagation.

► Many events are detected but an important part of them does not correspond to physical events but only to propagation effects.

THE ATMOSPHERIC UNCERTAINTIES

Atmospheric Specification (AS) :

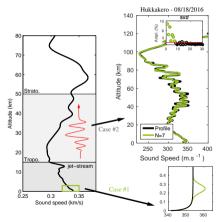
- Background state provided by numerical weather forecasts / atmospheric climate reanalysis.
- · Fluctuations of those profiles not resolved.

Uncertainties associated with AS :

- Come from complex physical phenomena (Turbulence, Gravity Waves,...)
- Statistical study can be conducted to characterize the uncertainty and describe it by a vector ξ ∈ ℝ^d.

• Assessing the impact of ξ on infrasound :

- Deviation from mean state (due to randomness) can be of great amplitude but the dimension is low *d* < 10.
- Long-range propagation can be simulated accurately but with high computational cost.
- For computational model parameters θ , $Y = F(X(\xi); \theta)$ can be represented using a metamodel.



OUTLINE

Polynomial Chaos based Metamodel

- What is a Metamodel?
- The Polynomial Chaos (gPC) Framework
- The problem of long-term integration
- A quick review of the existing methods

2 Modal decomposition

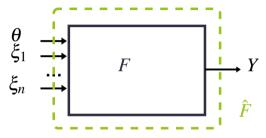
- Spectrum of the propagating operator
- From spectral expansion to temporal signals

3 gPC & Modal decomposition

- Modal decomposition for gPC
- Technical point : isolate a mode
- Different gPC for different physics

On the use of a Metamodel

Build a metamodel \hat{F} of $Y = F(X(\xi); \theta)$ where $\xi \sim \mathcal{N}(0, \mathbb{I}_n)$:



Characteristics of a metamodel :

- Calibrated using a small number of runs of the expensive code.
- Easy to assess numerically.
- Reproduce the statistical properties of the output.

Application to infrasound propagation :

- Forward uncertainty propagation : Y is a signal at a given distance R
- Association or localization : Y is a set of by-products (duration, amplitude, ...)

POLYNOMIAL CHAOS DECOMPOSITION

A non-intrusive metamodel of $Y = F(X(\xi); \theta)$ where $\xi \sim \mathcal{N}(0, I_n)$

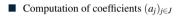
Polynomial chaos decomposition :

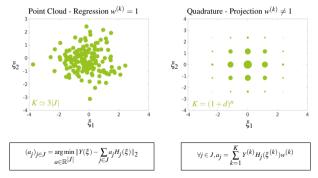
$$Y = \sum_{j \in J} a_j H_j(\xi) \text{ and } a_j = \langle Y, H_j \rangle,$$

- $(H_j)_{j \in J}$ set of polynomials (up to degree d)
- $(H_j)_{j \in J}$ orthonormals for inner product

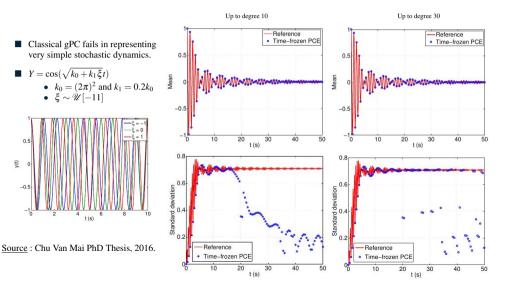
 $\langle f,g \rangle = \mathbb{E}[fg]$

- Cross-validation for order (|*J*|) selection : Leave-One-Out procedure.
- Sobol' indices can be expressed with the coefficients for sensitivity analysis.
- Once the $(a_j)_{j \in J}$ are computed, *Y* can be easily computed by evaluating the polynomials.





THE LONG-TERM INTEGRATION PROBLEM



A QUICK REVIEW

Existing methods for dealing with stochastic dynamics can be classified in two families :

- Work on the gPC :
 - Use high degree polynomials [Lucor and Karniadakis, 2004; Blatman and Sudret 2010], using techniques to limit the size of the basis [Jakeman et al., 2015; Hampton and Doostan, 2015; Doostan, 2013].
 - Multi-element approach to partition the input space [Wan and Karniadakis, 2005; Paffrath and Wever 2007] or the physical space [Chen et al. 2015].
 - Enrich the basis using non linear functions [Ghosh and Ghanem, 2008; Gosh and Iaccarino, 2007; Pettit and Beran, 2006; Le Maître et al., 2007].

Try to capture the dynamics :

- In the case of periodic systems [Witteveen and Bijl, 2008; Le Maître et al., 2010]
- Use time-dependant polynomials [Gerritsma et al., 2010; Heuveline and Schick, 2014; Luchtenburg et al., 2014] or use a stochastic time [Mai et al., 2017]
- Couple gPC with autoregressive processes [Spiridonakos and Chatzi, 2015; Wagner and Ferris, 2007; Kopsaftopoulos and Fassois, 2013; Samara et al., 2013; Sakellariou and Fassois, 2016, Mai et al., 2016]

For wave propagation in an inhomogeneous random medium, the dynamics can be characterized by the behaviour of the **spectral elements of the propagating operator**.

OUTLINE

Polynomial Chaos based Metamodel

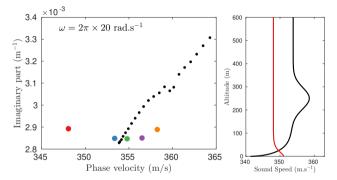
- What is a Metamodel?
- The Polynomial Chaos (gPC) Framework
- The problem of long-term integration
- A quick review of the existing methods

2 Modal decomposition

- Spectrum of the propagating operator
- From spectral expansion to temporal signals

3 gPC & Modal decomposition

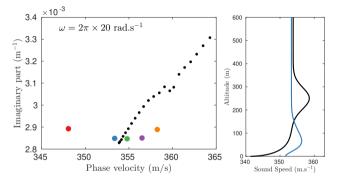
- Modal decomposition for gPC
- Technical point : isolate a mode
- Different gPC for different physics



Guided waves : $\left[\frac{d^2}{dz^2} + \frac{\omega^2}{c(z)^2}\right] \Psi(\omega, z) = k(\omega)^2 \Psi(\omega, z)$

On a bounded domain, the spectrum is only discrete but on a semi-open domain : $\sigma(H) = \sigma_{disc}(H) \oplus \sigma_{ess}(H)$.

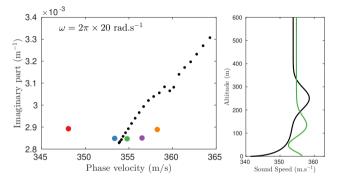
Only discrete modes (colored dots) have an acoustic contribution.



Guided waves : $\left[\frac{d^2}{dz^2} + \frac{\omega^2}{c(z)^2}\right] \Psi(\omega, z) = k(\omega)^2 \Psi(\omega, z)$

On a bounded domain, the spectrum is only discrete but on a semi-open domain : $\sigma(H) = \sigma_{disc}(H) \oplus \sigma_{ess}(H)$.

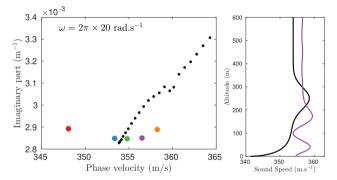
Only discrete modes (colored dots) have an acoustic contribution.



Guided waves : $\left[\frac{d^2}{dz^2} + \frac{\omega^2}{c(z)^2}\right] \Psi(\omega, z) = k(\omega)^2 \Psi(\omega, z)$

On a bounded domain, the spectrum is only discrete but on a semi-open domain : $\sigma(H) = \sigma_{disc}(H) \oplus \sigma_{ess}(H)$.

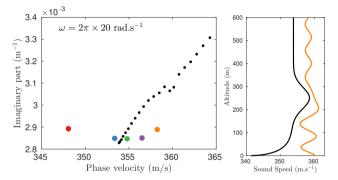
Only discrete modes (colored dots) have an acoustic contribution.



Guided waves : $\left[\frac{d^2}{dz^2} + \frac{\omega^2}{c(z)^2}\right] \Psi(\omega, z) = k(\omega)^2 \Psi(\omega, z)$

On a bounded domain, the spectrum is only discrete but on a semi-open domain : $\sigma(H) = \sigma_{disc}(H) \oplus \sigma_{ess}(H)$.

Only discrete modes (colored dots) have an acoustic contribution.



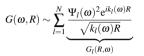
Guided waves : $\left[\frac{d^2}{dz^2} + \frac{\omega^2}{c(z)^2}\right] \Psi(\omega, z) = k(\omega)^2 \Psi(\omega, z)$

On a bounded domain, the spectrum is only discrete but on a semi-open domain : $\sigma(H) = \sigma_{disc}(H) \oplus \sigma_{ess}(H)$.

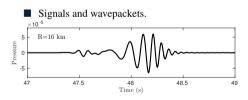
Only discrete modes (colored dots) have an acoustic contribution.

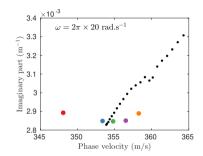
THE ACOUSTIC MODES

Green function at distance *R*.



 The number of discrete modes depends on frequency : *N* = *N*(*ω*).





$$\mathcal{F}^{-1}\left[\sum_{l=1}^{N_0} G_l s_0\right] = \sum_{l=1}^{N_0} \mathcal{F}^{-1}\left[G_l s_0\right]$$
$$N_0 = \max N(\boldsymbol{\omega})$$

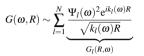
Random medium : c(z) gives $(k_l, \Psi_l(z))$.

Modal decomposition $\bigcirc igodeline$

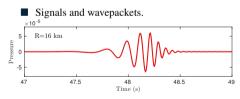
gPC & Modal decomposition 0000

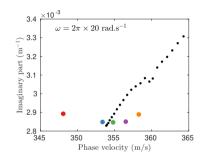
THE ACOUSTIC MODES

Green function at distance *R*.



 The number of discrete modes depends on frequency : *N* = *N*(*ω*).



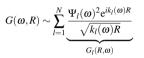


$$\mathcal{F}^{-1}\left[\sum_{l=1}^{N_0} G_l s_0\right] = \sum_{l=1}^{N_0} \mathcal{F}^{-1}\left[G_l s_0\right]$$
$$N_0 = \max N(\boldsymbol{\omega})$$

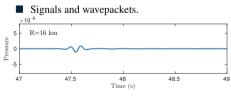
Random medium : c(z) gives $(k_l, \Psi_l(z))$.

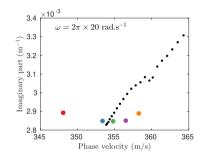
THE ACOUSTIC MODES

Green function at distance *R*.



 The number of discrete modes depends on frequency : *N* = *N*(*ω*).



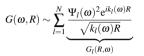


$$\mathcal{F}^{-1}\left[\sum_{l=1}^{N_0} G_l s_0\right] = \sum_{l=1}^{N_0} \mathcal{F}^{-1}\left[G_l s_0\right]$$
$$N_0 = \max N(\omega)$$

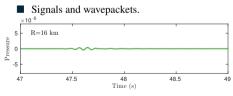
Random medium : c(z) gives $(k_l, \Psi_l(z))$.

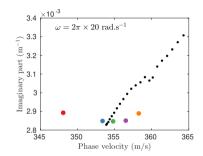
THE ACOUSTIC MODES

Green function at distance *R*.



 The number of discrete modes depends on frequency : *N* = *N*(*ω*).





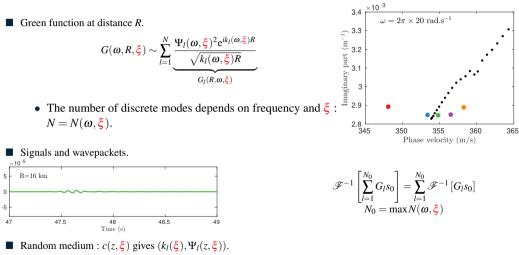
$$\mathscr{F}^{-1}\left[\sum_{l=1}^{N_0} G_l s_0\right] = \sum_{l=1}^{N_0} \mathscr{F}^{-1}\left[G_l s_0\right]$$
$$N_0 = \max N(\omega)$$

Random medium : c(z) gives $(k_l, \Psi_l(z))$.

Pressure

Modal decomposition $\bigcirc igodeline$

THE ACOUSTIC MODES



OUTLINE

Polynomial Chaos based Metamodel

- What is a Metamodel?
- The Polynomial Chaos (gPC) Framework
- The problem of long-term integration
- A quick review of the existing methods

2 Modal decomposition

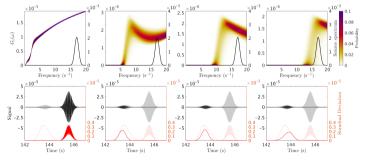
- Spectrum of the propagating operator
- From spectral expansion to temporal signals

3 gPC & Modal decomposition

- Modal decomposition for gPC
- Technical point : isolate a mode
- Different gPC for different physics

GPC DEVELOPMENT OF THE SPECTRAL ELEMENTS

- PDF of $G_i(\omega, \xi)$ as a function of ξ depends on the mode number *i*.
- Source is fixed and deterministic, we only look at variability generated by the random medium.



gPC expansion for

$$Y = (k_l(\xi), \Psi_l(z,\xi))_{l=1,...,N}:$$
• $\tilde{k}_l(\xi) = \sum_{j \in J} a_j^{k_l} H_j(\xi)$
• $\tilde{\Psi}_l(z,\xi) = \sum_{j \in J} a_j^{\Psi_l}(z) H_j(\xi)$

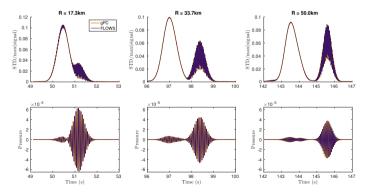
 \Rightarrow Metamodel for s(t).

COMPARISON WITH MONTE-CARLO SIMULATIONS

About convergence of signals $\tilde{s}(t, \xi)$ produced by the gPC-metamodel.

- (1) gPC provides convergence in L^2 -norm and (2) *G* depends continuously on k_l and Ψ_l . Hence $||\tilde{G} G||_2 \xrightarrow{P \to \infty} 0$.
- \mathscr{F} is an L^2 -isometry and thus, $||\tilde{s}(t,\xi) s(t,\xi)||_2 \xrightarrow{P \to \infty} 0$.

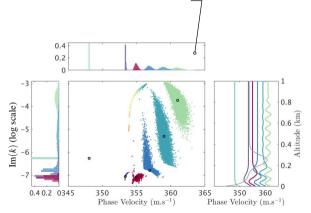
Comparison of gPC and Monte-Carlo simulations :



Modal decomposition

TRACKING MODES

Eigenvalues as random variables (ω is fixed)

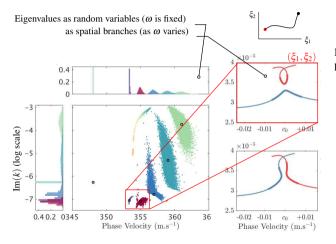


Modes are function of ξ and ω but the dependance is unknown.

- Need to track the eigenvalue as a function of ξ to isolate the QoI and calibrate the metamodel for a fixed frequency.
- Need to track the eigenvalue as a function of ω to compute the signal associated with this mode for a fixed input parameter.

Modal decomposition 00

TRACKING MODES

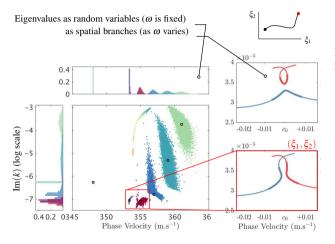


Modes are function of ξ and ω but the dependance is unknown.

- Need to track the eigenvalue as a function of ξ to isolate the QoI and calibrate the metamodel for a fixed frequency.
- Need to track the eigenvalue as a function of ω to compute the signal associated with this mode for a fixed input parameter.

Modal decomposition 00

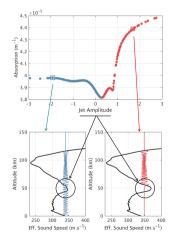
TRACKING MODES



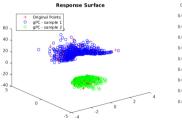
Modes are function of ξ and ω but the dependance is unknown.

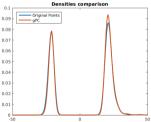
- Need to track the eigenvalue as a function of ξ to isolate the QoI and calibrate the metamodel for a fixed frequency.
- Need to track the eigenvalue as a function of ω to compute the signal associated with this mode for a fixed input parameter.

MODE SWITCHING : GPC FOR PARTIAL RESPONSE SURFACE



- A fixed mode can behave very differently depending on the profiles.
- Those regimes can be seperated in the parameter space in order to calibrate different gPC and capture the different physics :



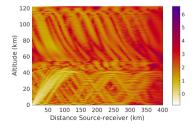


CONCLUSION AND PERSPECTIVES

- ► Take-home messages :
 - Computing gPC expansions on spectral elements allows to circumvent the long-term integration problem for wave propagation.
 - Our metamodel can be used for any source and at any distance which opens the way to bayesian inversion.
 - The spectral decomposition captures local perturbations and can be used for statistical model reduction.

► Perspectives :

- Statistical characterization of the perturbation : Gravity Waves model.
- Multi-scale approach to take small strucutures into account.
- Write a manuscript ...



STD of |G|

A PERTURBATIVE APPROACH FOR SMALL SCALE FLUCTUATION

Atmospheric perturbations include large deviation and turbulent noise :

$$c(z,\xi) = \underbrace{c_0(z,\xi)}_{\text{large}} + \underbrace{c_1(z)}_{\text{small}} = c_0(1 + \varepsilon \mu).$$

The impact of small-variance turbulence is modelled using the coupling matrix $(C_{nm})_{n,m}$

$$p \sim \sum_{n} G_{n}(\xi) \left[1 + i\sqrt{\varepsilon}R \frac{\omega^{2} C_{nn}(\xi)}{2k_{n0}(\xi)} \right] + \sum_{n,m} D_{nm}(\xi)$$

where D_{nm} is obtained from C_{nm} .

 $\begin{array}{l} \textbf{gPC expansion of } C_{nm} \text{ (which depends on } c_0) \text{ can be derived from} \\ \phi_{n0} = \sum_{k=0}^{+\infty} \alpha_k^{(n)}(z) H_k(\xi) : \\ \hline \hline C_{nl} = \sum_{k=0}^{+\infty} \gamma_k^{(nl)} H_k(\xi) \end{array} \text{ where } \gamma_p^{(nl)} = \sum_{j,k} \left\langle \frac{\mu(z) \alpha_j^{(n)}(z)}{c_0^2(z)}, \alpha_k^{(l)}(z) \right\rangle \mathbb{E}[H_j H_k H_p] \end{aligned}$

