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Introduction
The problem of wave propagation through a random medium arises naturally in many physical applications. The propagation in such a medium results
from the superposition of interfering wave packets, each one depending on the stochastic characteristics of the medium.
The construction of a metamodel falter over the long term integration problem ([1]) which – in this case – appears for long distance propagation.
To circumvent this limitation we propose to work in the Fourier domain, and to use a normal mode method to capture the interaction of the propagation
with the spatial structures of the medium and of its perturbation.
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Numerical example
Acoustic propagation through a boundary layer
profile with nocturnal jet with random parame-
ters.
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• ξ1, ξ2: independant gaussian variables.
• Variance of the parameters: ∼ 7%.
• Boundary conditions:

– Neumann homogeneous at the ground.
– PML at zmax = 1km.

Normal modes decomposition
After a Fourier transform in time, the problem of wave propagation results in solving the Helmoltz
equation:

H(x, ξ)u = ∆u+ ω2

c(x, ξ)2u = s(ω)

where s(ω) is the spectrum of the source and c(x, ξ) the wave celerity in the medium. The randomness
of the medium gives a wave celerity which depends on random paramaters ξ.
Linear operator theory ensures that the eigenfunctions (Ψk)k∈K of H form a basis of the space
of squarely integrable functions. This basis gives a natural decomposition in wave packets for the
solution u.
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ω = 2π × 20 rad.s−1
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A modular metamodel
We propose to consider the Polynomial Chaos expansion (gPC) of this basis in order to be able to
decompose the solution for every realisation of our medium with a low computational cost. Once the
gPC expansions of the normal modes (λ̂k(ω, ξ))k∈K and (Ψ̂k(x, ω, ξ))k∈K are computed, they
can be used to generate signals for a given source at a distance R:

û(ω,R, ξ) =
[
i

4
∑
k∈K

H
(1)
0 (λ̂k(ω, ξ)R)Ψ̂k

2
(0, ω, ξ)

]
s(ω) (1)

45.4 45.6 45.8 46 46.2 46.4 46.6
-8

-6

-4

-2

0

2

4

6
×10 -5

ξ
1
=0.029624, ξ

2
=0.19713

flows

gPC

45.4 45.6 45.8 46 46.2 46.4 46.6
-6

-4

-2

0

2

4

6
×10 -5

ξ
1
=-0.35689, ξ

2
=-1.4773

flows

gPC

Since the metamodel is built upstream, a stochastic source can be considered without supplementary
cost. Sensitivity analysis can also be conducted using those expansions.
Moreover, this appraoch gives a natural framework for model reduction: the sum can take into
account only the most contributing modes ([2]). For instance, by taking only one mode we have a
metamodel for one wave packet which can be usefull when studying a particular arrival in a received
signal.

Towards Multi-Level
Atmospheric perturbations include large devi-
ation and turbulent noise:

c(z, ξ) = c0(z, ξ) + εc1(z)

Perturbative method allows to take into account
the turbulent noise without supplementary cost.

u(ω,R, ξ) = û(ω,R, ξ) + f(ω,R,C(ξ))

where the coupling matrix C(ξ) can be devel-
opped on the gPC basis.

Conclusion

1. Metamodel able to reproduce signal in a
random medium.
2. Metamodel independant from the source,

hence the possibility to deal with a stochastic
source.
3. Multi-level approach allowing to deal with

small structures with reasonable dimension of
the input.
4. Modular metamodel which can be used in

a context of model reduction.
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